首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Independent component analysis for brain fMRI does not select for independence
  • 本地全文:下载
  • 作者:I. Daubechies ; E. Roussos ; S. Takerkart
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:26
  • 页码:10415-10422
  • DOI:10.1073/pnas.0903525106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:InfoMax and FastICA are the independent component analysis algorithms most used and apparently most effective for brain fMRI. We show that this is linked to their ability to handle effectively sparse components rather than independent components as such. The mathematical design of better analysis tools for brain fMRI should thus emphasize other mathematical characteristics than independence.
国家哲学社会科学文献中心版权所有