首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Biophysical mechanisms of phase contrast in gradient echo MRI
  • 本地全文:下载
  • 作者:Xiang He ; Dmitriy A. Yablonskiy
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:32
  • 页码:13558-13563
  • DOI:10.1073/pnas.0904899106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Recently reported contrast in phase images of human and animal brains obtained with gradient-recalled echo MRI holds great promise for the in vivo study of biological tissue structure with substantially improved resolution. Herein we investigate the origins of this contrast and demonstrate that it depends on the tissue "magnetic architecture" at the subcellular and cellular levels. This architecture is mostly determined by the structural arrangements of proteins, lipids, non-heme tissue iron, deoxyhemoglobin, and their magnetic susceptibilities. Such magnetic environment affects/shifts magnetic resonance (MR) frequencies of the water molecules moving/diffusing in the tissue. A theoretical framework allowing quantitative evaluation of the corresponding frequency shifts is developed based on the introduced concept of a generalized Lorentzian approximation. It takes into account both tissue architecture and its orientation with respect to the external magnetic field. Theoretical results quantitatively explain frequency contrast between GM, WM, and CSF previously reported in motor cortex area, including the absence of the contrast between WM and CSF. Comparison of theory and experiment also suggests that in a normal human brain, proteins, lipids, and non-heme iron provide comparable contributions to tissue phase contrast; however, the sign of iron and lipid contributions is opposite to the sign of contribution from proteins. These effects of cellular composition and architecture are important for quantification of tissue microstructure based on MRI phase measurements. Also theory predicts the dependence of the signal phase on the orientation of WM fibers, holding promise as additional information for fiber tracking applications.
  • 关键词:cellular architecture ; contrast mechanisms ; grey matter ; white matter
国家哲学社会科学文献中心版权所有