首页    期刊浏览 2024年07月01日 星期一
登录注册

文章基本信息

  • 标题:Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels
  • 本地全文:下载
  • 作者:Kyu Pil Lee ; Joseph P. Yuan ; Weizhong Zeng
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:34
  • 页码:14687-14692
  • DOI:10.1073/pnas.0904664106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Ca2+ influx by store-operated Ca2+ influx channels (SOCs) mediates many cellular functions regulated by Ca2+, and excessive SOC-mediated Ca2+ influx is cytotoxic and associated with disease. One form of SOC is the CRAC current that is mediated by Orai channels activated by STIM1. A fundamental property of the native CRAC and of the Orais is fast Ca2+-dependent inactivation, which limits Ca2+ influx to guard against cellular damage. The molecular mechanism of this essential regulatory mechanism is unknown. We report here the fast Ca2+-dependent inactivation is mediated by three conserved glutamates in the C termini (CT) of Orai2 and Orai3, which show prominent fast Ca2+-dependent inactivation compared with Orai1. Transfer of the CT between the Orais transfers both the extent of channel opening and the mode of fast Ca2+-dependent inactivation. Fast Ca2+-dependent inactivation of the Orais also requires a domain of STIM1; fragments of STIM1 that efficiently open Orai channels do not evoke fast inactivation unless they include an anionic sequence that is C-terminal to the STIM1-Orai activating region (SOAR). Our studies suggest that Orai CT are necessary and sufficient to control pore opening and uncover the molecular mechanism of fast Ca2+-dependent inactivation that has implications for Ca2+ influx by SOC in physiological and pathological states.
  • 关键词:calcium ; fast inactivation ; STIM1
国家哲学社会科学文献中心版权所有