期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2009
卷号:106
期号:36
页码:15254-15258
DOI:10.1073/pnas.0906943106
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We report studies defining the diameter-dependent location of electrically active dopants in silicon (Si) and germanium (Ge) nanowires (NWs) prepared by nanocluster catalyzed vapor-liquid-solid (VLS) growth without measurable competing homogeneous decomposition and surface overcoating. The location of active dopants was assessed from electrical transport measurements before and after removal of controlled thicknesses of material from NW surfaces by low-temperature chemical oxidation and etching. These measurements show a well-defined transition from bulk-like to surface doping as the diameter is decreased <22-25 nm for n- and p-type Si NWs, although the surface dopant concentration is also enriched in the larger diameter Si NWs. Similar diameter-dependent results were also observed for n-type Ge NWs, suggesting that surface dopant segregation may be general for small diameter NWs synthesized by the VLS approach. Natural surface doping of small diameter semiconductor NWs is distinct from many top-down fabricated NWs, explains enhanced transport properties of these NWs and could yield robust properties in ultrasmall devices often dominated by random dopant fluctuations.