期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2009
卷号:106
期号:45
页码:18936-18941
DOI:10.1073/pnas.0908842106
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Intradermal immunization using microfabricated needles represents a potentially powerful technology, which can enhance immune responses and provide antigen sparing. Solid vaccine formulations, which can be coated onto microneedle patches suitable for simple administration, can also potentially offer improved shelf-life. However the approach is not fully compatible with many vaccine adjuvants including alum, the most common adjuvant used in the vaccine market globally. Here, we introduce a polyphosphazene immuno adjuvant as a biologically potent and synergistic constituent of microneedle-based intradermal immunization technology. Poly[di(carboxylatophenoxy)phosphazene], PCPP, functions both as a vaccine adjuvant and as a key microfabrication material. When used as part of an intradermal delivery system for hepatitis B surface antigen, PCPP demonstrates superior activity in pigs compared to intramascular administration and significant antigen sparing potential. It also accelerates the microneedle fabrication process and reduces its dependence on the use of surfactants. In this way, PCPP-coated microneedles may enable effective intradermal vaccination from an adjuvanted patch delivery system.