期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2009
卷号:106
期号:46
页码:19491-19496
DOI:10.1073/pnas.0906074106
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:How cancer cells bind to vascular surfaces and extravasate into target organs is an underappreciated, yet essential step in metastasis. We postulate that the metastatic process involves discrete adhesive interactions between circulating cancer cells and microvascular endothelial cells. Sialyl Lewis X (sLeX) on prostate cancer (PCa) cells is thought to promote metastasis by mediating PCa cell binding to microvascular endothelial (E)-selectin. Yet, regulation of sLeX and related E-selectin ligand expression in PCa cells is a poorly understood factor in PCa metastasis. Here, we describe a glycobiological mechanism regulating E-selectin-mediated adhesion and metastatic potential of PCa cells. We demonstrate that {alpha}1,3 fucosyltransferases (FT) 3, 6, and 7 are markedly elevated in bone- and liver-metastatic PCa and dictate synthesis of sLeX and E-selectin ligands on metastatic PCa cells. Upregulated FT3, FT6, or FT7 expression induced robust PCa PC-3 cell adhesion to bone marrow (BM) endothelium and to inflamed postcapillary venules in an E-selectin-dependent manner. Membrane proteins, CD44, carcinoembryonic antigen (CEA), podocalyxin-like protein (PCLP), and melanoma cell adhesion molecule (MCAM) were major scaffolds presenting E-selectin-binding determinants on FT-upregulated PC-3 cells. Furthermore, elevated FT7 expression promoted PC-3 cell trafficking to and retention in BM through an E-selectin dependent event. These results indicate that {alpha}1,3 FTs could enhance metastatic efficiency of PCa by triggering an E-selectin-dependent trafficking mechanism.