期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2009
卷号:106
期号:48
页码:20164-20167
DOI:10.1073/pnas.0906676106
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Nature has mastered the art of creating complex structures through self-assembly of simpler building blocks. Adapting such a bottom-up view provides a potential route to the fabrication of novel materials. However, this approach suffers from the lack of a sufficiently detailed understanding of the noncovalent forces that hold the self-assembled structures together. Here we demonstrate that nature can indeed guide us, as we explore routes to helicity with achiral building blocks driven by the interplay between two competing length scales for the interactions, as in DNA. By characterizing global minima for clusters, we illustrate several realizations of helical architecture, the simplest one involving ellipsoids of revolution as building blocks. In particular, we show that axially symmetric soft discoids can self-assemble into helical columnar arrangements. Understanding the molecular origin of such spatial organisation has important implications for the rational design of materials with useful optoelectronic applications.