期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2009
卷号:106
期号:49
页码:20637-20640
DOI:10.1073/pnas.0909718106
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Selective capture of CO2, which is essential for natural gas purification and CO2 sequestration, has been reported in zeolites, porous membranes, and amine solutions. However, all such systems require substantial energy input for release of captured CO2, leading to low energy efficiency and high cost. A new class of materials named metal-organic frameworks (MOFs) has also been demonstrated to take up voluminous amounts of CO2. However, these studies have been largely limited to equilibrium uptake measurements, which are a poor predictor of separation ability, rather than the more industrially relevant kinetic (dynamic) capacity. Here, we report that a known MOF, Mg-MOF-74, with open magnesium sites, rivals competitive materials in CO2 capture, with 8.9 wt. % dynamic capacity, and undergoes facile CO2 release at significantly lower temperature, 80 {degrees}C. Mg-MOF-74 offers an excellent balance between dynamic capacity and regeneration. These results demonstrate the potential of MOFs with open metal sites as efficient CO2 capture media.