首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:Identification of a region of the DNMT1 methyltransferase that regulates the maintenance of genomic imprints
  • 本地全文:下载
  • 作者:Ewa Borowczyk ; K. Naga Mohan ; Leonardo D'Aiuto
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:49
  • 页码:20806-20811
  • DOI:10.1073/pnas.0905668106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Reprogramming of DNA methylation patterns during mammalian preimplantation development involves the concurrent maintenance of methylation on differentially methylated domains (DMDs) of imprinted genes and a marked reduction of global (non-DMD) genomic methylation. In the developing mammalian embryo, one allele of a DMD is unmethylated, and the opposite parental allele is methylated, having inherited this methylation from the parental gamete. The maintenance of DMDs is important for monoallelic imprinted gene expression and normal development of the embryo. Because the DNMT1 cytosine methyltransferase governs maintenance methylation in mammals, rearrangements of non-DMD, but not DMD methylation in preimplantation embryos suggest that the preimplantation DNMT1-dependent maintenance mechanism specifically targets DMD sequences. We explored this possibility using an engineered mouse ES cell line to screen for mutant DNMT1 proteins that protect against the loss of DMD and/or global (non-DMD) methylation in the absence of the wild-type endogenous DNMT1 methyltransferase. We identified DNMT1 mutants that were defective in maintenance of either DMD and/or non-DMD methylation. Among these, one mutant maintained non-DMD methylation but not imprinted DMD methylation and another mutant maintained just DMD methylation. The mutated amino acids of these mutants reside in a mammal-specific, disordered region near the amino terminus of DNMT1. These findings suggest that DNMT1 participates in epigenetic reprogramming through its ability to distinguish different categories of methylated sequences.
  • 关键词:epigenetic ; imprinting ; methylase ; methylation ; reprogramming
国家哲学社会科学文献中心版权所有