期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1975
卷号:72
期号:11
页码:4664-4668
DOI:10.1073/pnas.72.11.4664
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Genetic complexity of processes governing the aging rate of man was estimated by determining the maximum rate lifespan has evolved along the hominid ancestral-descendant sequence. Maximum lifespan potential was found to have increased approximately 2-fold over the past 3 million years, reaching a maximum rate of increase of 14 years per 100,000 years about 100,000 years ago. It is estimated that about 0.6% of the total functional genes have received substitutions leading to one or more adaptive amino acid changes during this 100,000-year time-period. This suggests that aging is not the result of an expression of a large number of independently acting processes. Instead, primary aging processes appear to exist where only a few genetic changes are necessary to decrease uniformly the aging rate of many different physiological functions.