期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1976
卷号:73
期号:12
页码:4294-4294
DOI:10.1073/pnas.73.12.4294
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:It is proved that on any bounded domain in the complex Euclidean space Cn the Bergman metric is always greater than or equal to the Caratheodory distance. This leads to a number of interesting consequences. Here two such consequences are given. (i) The Bergman metric is complete whenever the Caratheodory distance is complete on a bounded domain. (ii) The Weil-Petersson metric is not uniformly equivalent to the Bergman metric in the Teichmuller space T(g) of any Riemann surface of genus g [≥] 2.
关键词:Carathéodory differential metric ; Weil-Petersson metric ; Teichmüller space