首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Role of nucleotides in tubulin polymerization: effect of guanosine 5'-methylene diphosphonate
  • 本地全文:下载
  • 作者:I V Sandoval ; J L Jameson ; J Niedel
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1978
  • 卷号:75
  • 期号:7
  • 页码:3178-3182
  • DOI:10.1073/pnas.75.7.3178
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Incubation of purified rat brain tubulin with guanosine 5'-methylene diphosphonate [GMP(CH2)P] (1 mM), a GDP analog resistant to hydrolysis, results in the polymerization of 20-30% of the total tubulin present. Analogous incubations with GDP (1 mM) do not result in tubulin polymerization. Polymerization with GMP(CH2)P occurs in the presence of alkaline phosphatase (EC 3.1.3.1 ) under conditions that completely hydrolyze the likely phosphate donors (GTP, GDP, and GMP) as well as the potential product [GMP(CH2)PP] of the transphosphorylase activity present in purified tubulin preparations. Tubulin polymerization in vitro thus can occur in the absence of gamma-phosphate and phosphate bond hydrolysis at the exchangeable nucleotide-binding site of tubulin. Polymerization of tubulin by GMP(CH2)P is neither prevented nor reversed by concentrations of calcium (2 mM) that prevent microtubule assembly and disrupt already formed microtubules induced by GTP. However, tubulin polymerized with GMP(CH2)P is readily depolymerized by cold (4 degrees, 30 min). The possible involvement of GTP alpha-beta bond hydrolysis must be considered seriously as playing a role in the process of microtubule depolymerization.
国家哲学社会科学文献中心版权所有