期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1978
卷号:75
期号:7
页码:3109-3112
DOI:10.1073/pnas.75.7.3109
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The conjugative TOL plasmid (75 Mdal), specifying biodegradation of xylenes, toluene, and trimethylbenzene derivatives, undergoes dissociation in Pseudomonas aeruginosa PAO to a nonconjugative TOL* plasmid (28 Mdal) and a transfer plasmid termed TOL{Delta} (48 Mdal). The TOL* plasmid is rendered transmissible through introduction of a number of conjugative plasmids such as factor K, CAM, and TOL{Delta} but not by the FP2 derivative pR0271. Transfer of TOL* via factor K or TOL{Delta} is mediated by the formation of plasmid cointegrates; no recombination is observed with CAM. A recombinant RP4-TOL plasmid (76 Mdal), which has lost resistance to tetracycline, has been isolated. The TOL* segment can be transposed from this RP4-TOL recombinant plasmid to other antibiotic resistance plasmids such as R702. A segment of DNA, specifying salicylate degradation from SAL plasmid, was transposed onto pAC10, the TOL*- derivative of RP4-TOL recombinant plasmid, which has lost resistance to tetracycline but retains the transfer genes of RP4. Transposition of the salicylate degradative genes onto pAC10 results in the loss of kanamycin resistance. It has been possible to isolate SAL+ segregants from pAC10[unk]SAL transposition derivatives that have lost the pAC10 plasmid. Such segregants harbor the salicylate degradative genes in the form of a nonconjugative plasmid (SAL*). Transfer of RP4[unk]TOL* or pAC10[unk]SAL* transposition derivatives to Escherichia coli, Salmonella typhimurium, Agrobacterium tumefaciens, or Azotobacter vinelandii results in the functional expression of the antibiotic resistance genes but not of the hydrocarbon degradative genes. Such genes, however, are fully expressed on being transferred back to Pseudomonas.