期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1978
卷号:75
期号:8
页码:3713-3716
DOI:10.1073/pnas.75.8.3713
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:ATP-driven transport and accumulation of epinephrine in chromaffin granule membrane vesicles isolated from bovine adrenal medulla is inhibited by the proton ionophores carbonylcyanide p-trifluoromethoxyphenylhydrazone and nigericin, but not by valinomycin. Moreover, an artificially imposed pH gradient (interior acid) is able to drive this reserpine-sensitive transport system in the absence of ATP. Dicyclohexylcarbodiimide, an inactivator of the chromaffin granule membrane-bound ATPase, completely inhibits ATP-dependent epinephrine accumulation, but has much less effect when an imposed pH gradient is the driving force for epinephrine transport. The findings provide a strong indication that a pH gradient (interior acid) is the immediate driving force for epinephrine uptake in these storage granules and suggest that ATP-driven epinephrine transport is the result of two processes: (i) generation of a proton electrochemical gradient (interior acid and positive) by the membrane-bound, proton-translocating ATPase; and (ii) pH gradient-driven accumulation of the catecholamine.