期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1978
卷号:75
期号:9
页码:4329-4333
DOI:10.1073/pnas.75.9.4329
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The lipid environment of acetylcholine receptor-rich membranes from Torpedo marmorata has been studied with spin labels. The electron spin resonance spectra of both stearic acid and steroid probes in the membranes revealed an immobilized lipid component, in addition to the fluid component which is found in aqueous bilayer dispersions of the extracted lipids. The spin labels also cause a differential paramagnetic quenching of the intrinsic protein fluorescence of the membranes, which is sensitive to the action of cholinergic ligands and follows a modified Stern-Volmer law. Electron spin resonance difference spectroscopy shows that the protein-associated lipid is immobilized with respect to rotation both around and perpendicular to the long molecular axis, with correlation times : formula: (see text) approximately 50-70 ns. The proportion of lipid in the immobilized component is greater than calculated for a single boundary layer around the protein and corresponds more closely to the total interstitial lipid occupying the area between densely packed protein units in acetylcholine receptor-rich membranes.