期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1979
卷号:76
期号:4
页码:1924-1928
DOI:10.1073/pnas.76.4.1924
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Butterflies in the South American genus Heliconius have undergone a spectacular adaptive radiation (with convergent evolution between some lines) in their color patterns; this has been produced by natural selection for muellerian mimicry. The genetic basis of this radiation, shown by crossing highly differentiated races within two of the species, is homozygosity for alternative alleles at some half dozen loci. In complete contrast, allozyme loci in these butterflies are strongly heterozygous and show only frequency differences (never amounting to homozygosity of alternative alleles) between races; the amount of allozyme divergence is the same between races of H. erato and H. sara, although in color pattern the first forms marked races and the other does not. For the allozymes, there is a strong correlation over loci for rate of divergence between species and average heterozygosity. This is not true of the genes controlling color pattern. Heterozygosity of the enzymes is correlated with subunit molecular weight. Thus, different parts of the genome can evolve in different ways simultaneously; genes controlling color pattern in the "classical" mode, and allozymes in a different mode in which the rate of evolution is related to their heterozygosity (a "balance" or "neutral" mode).