期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1979
卷号:76
期号:8
页码:3805-3808
DOI:10.1073/pnas.76.8.3805
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Two techniques have been applied to the determination of the number and type (2-Fe, 4-Fe) of iron-sulfur centers in the iron-sulfur flavoprotein succinate dehydrogenase [succinate:(acceptor) oxidoreductase, EC 1.3.99.1 ]. One procedure uses p-CF3C6H4SH as an extrusion reagent and Fourier transform 19F nuclear magentic resonance as the method of detection and quantitation of extruded cores of these centers in the form of [Fe2S2(SRF)4]2- and [Fe4S4(SRF)4]2- (RF = p-C6H4CF3). The second procedure, interprotein core transfer, involves thiol displacement of iron-sulfur cores followed by specific core transfer to the apoproteins of Bacillus polymyxa ferredoxin and adrenodoxin. Detection and quantitation are accomplished by electron paramagnetic resonance of reduced proteins at low temperatures. Both procedures clearly show that succinate dehydrogenase contains two dimeric (Fe2S2) and one tetrameric (Fe4S4) centers per mole of histidyl flavin, accounting for all eight nonheme iron and eight labile sulfur atoms found by chemical analysis. These results remove uncertainties created by the less than stoichiometric amounts of binuclear centers detected by electron paramagnetic resonance after dithionite reduction and provide secure characterization of the iron-sulfur centers in this enzyme.