期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1980
卷号:77
期号:4
页码:2103-2107
DOI:10.1073/pnas.77.4.2103
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Cultures of 3T6 cells were plated in serum-free medium and grown in the presence of insulin (1 microgram/ml) and epidermal growth factor (0.5 ng/ml). External ATP (250 microM) applied to such cultures caused a rapid efflux of acid-soluble pools labeled with [3H]uridine, 2-deoxy[3H]glucose, or 86Rb+ and allowed the entry of p-nitrophenylphosphate. This increase in passive membrane permeability depended on ATP concentration, pH, and time of ATP contact with the cells, and it was not produced by GTP, UTP, or Pi. In the presence of compounds that decrease intracellular ATP, low concentrations of external ATP (40 microM) caused a massive synergistic stimulation of efflux. The efflux of acid-soluble pools was stopped (sealing) by bringing the cultures of 3T6 cells to neutral pH in the presence of Ca2+ and Mg2+. Exposure of 3T6 cells grown in serum-free medium to [gamma-32P]ATP under the conditions of permeabilization led to the selective labeling of a membrane protein with a molecular weight of 44,000 as revealed by NaDodSO4 polyacrylamide gel electrophoresis and autoradiography. The results show that the control of membrane permeability by ATP is completely independent of serum-deprived proteins. Furthermore, the protein band (Mr, 44 x 10(3)) that shows selective labeling by [32P]ATP during permeabilization is not an adsorbed serum component.