首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors
  • 本地全文:下载
  • 作者:C Braestrup ; M Nielsen ; C E Olsen
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1980
  • 卷号:77
  • 期号:4
  • 页码:2288-2292
  • DOI:10.1073/pnas.77.4.2288
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Benzodiazepines probably exert their anxiolytic, hypnotic, and anticonvulsant effects by interacting with brain-specific high-affinity benzodiazepine receptors. In searching for possible endogenous ligands for these receptors we have purified a compound 10(7)-fold from human urine by extractions, treatment with hot ethanol, and column chromatography. The compound was identified as beta-carboline-3-carboxylic acid ethyl ester (IIc) by mass spectrometry, NMR spectrometry, and synthesis; IIc was also isolated from brain tissues (20 ng/g) by similar procedures. Very small concentrations of IIc displaced [3H]diazepam completely from specific cerebral receptors, but not from liver and kidney binding sites; the concentration causing 50% inhibition of specific [3H]diazepam binding (IC50) was 4-7 nM compared to ca. 5 nM for the potent benzodiazepine lorazepam. Specific binding sites for quinuclidinyl benzilate, naloxone, spiroperidol, serotonin, muscimol, and WB 4101 were not affected by IIc. In contrast to benzodiazepines, IIc exhibits "mixed type" competitive inhibition of forebrain benzodiazepine receptors (negative cooperativity). We surmise that an endogenous ligand for benzodiazepine receptors may be a derivative of beta-carboline-3-carboxylic acid.
国家哲学社会科学文献中心版权所有