标题:Regulation of the stability of poly(I)xpoly(C)-induced human fibroblast interferon mRNA: selective inactivation of interferon mRNA and lack of involvement of 2',5'-oligo(A) synthetase activation during the shutoff of interferon production
期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1980
卷号:77
期号:6
页码:3489-3493
DOI:10.1073/pnas.77.6.3489
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The inactivation of interferon mRNA during the shutoff phase of interferon production in poly(I)xpoly(C)-induced human fibroblast cultures is selective. We have determined that the shutoff of interferon production, which takes place from 3 to 8 hr after the beginning of induction, is not associated with an appreciable declined in the rate of bulk cellular protein synthesis or of cellular protein secretion. While the amount of translatable interferon mRNA declined markedly during the shutoff phase, the level of translatable bulk cellular mRNA and the stability of [3H]uridine-labeled mRNA were unaffected. Superinduction with actinomycin D selectively stabilized interferon mRNA with no apparent effect on the stability of bulk cellular mRNA. Furthermore, an activation of the 2',5'-oligo(A) synthetase/endonuclease system does not appear to be involved in the shutoff phenomenon. Uninduced FS-4 cells contained a low basal level of 2'5'-oligo(A) synthetase activity, which was unchanged in poly(I)xpoly(C)-induced cells during the shutoff phase. Treatment of FS-4 cells with interferon for 16-18 hr prior to induction increased the enzyme activity by approximately 200-fold. However, this did not inhibit interferon production after induction with poly(I)xpoly(C) alone or after superinduction with cycloheximide or actinomycin D or both. Furthermore, the rates of decay of interferon production were comparable in cells with either a basal or an increased level of 2',5'-oligo(A) synthetase. Thus a 200-fold increase in 2',5'-oligo(A) synthetase level did not affect either the stability of interferon mRNA or the efficacy of interferon superinduction by metabolic inhibitors.