首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Both the 7-methyl and the 2'-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription
  • 本地全文:下载
  • 作者:M Bouloy ; S J Plotch ; R M Krug
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1980
  • 卷号:77
  • 期号:7
  • 页码:3952-3956
  • DOI:10.1073/pnas.77.7.3952
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The ability of eukaryotic mRNAs to serve as primers for influenza virus RNA transcription depends on the presence of a 5'-terminal methylated can structure, the absence of which eliminates essentially all priming activity [Plotch, S. J., Bouloy, M. & Krug, R. M. (1979) Proc. Natl. Acad. Sci. USA 76, 1618-1622]. The present study was undertaken to determine the extent to which each of the methyl groups in the cap influences the priming activity of a mRNA. To assess the importance of the 2'-O-methyl group on the penultimate base of the cap, we used several plant viral RNAs containing the monomethylated cap 0 structure, m7GpppG. Brome mosaic virus (BMV) RNA 4 stimulated influenza virus RNA transcription only about 10-15% as effectively as did globin mRNA, which has a cap with a 2'-O-methyl group. When the cap of BMV RNA 4 was enzymatically 2'-O-methylated, its priming activity was increased 14-fold. Qualitatively similar results were obtained with other plant virus RNAs. To assess the importance of the terminal 7-methyl group, BMV RNA 4 containing the cap structure GpppGm was prepared by a series of chemical and enzymatic steps. These molecules were found to be only about 15% as active in priming as BMV RNA 4 molecules containing the fully methylated cap, m7GpppGm, indicating that the terminal 7-methyl group also strongly enhances priming activity. These results indicate that the cap 1 structure (m7GpppXm) found in all mammalian cellular mRNAs is more stringently required for priming influenza virus RNA transcription than for translation in cell-free systems.
国家哲学社会科学文献中心版权所有