期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1981
卷号:78
期号:2
页码:903-907
DOI:10.1073/pnas.78.2.903
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We have previously shown that the discontinuous replication of bacteriophage T7 DNA is primed by tetraribonucleotides (major component) or pentaribonucleotides. Both tetramers and pentamers start with pppA-C and are rich in A and C at the third and fourth nucleotides. In this study, the sites of transition from primer RNA to DNA in vivo have been located on a 340-nucleotide segment of the H strand of the T7 genome by 32P-labeling in vitro of the 5'-hydroxyl ends of DNA resulting from alkaline hydrolysis of RNA-linked T7 DNA fragments. Five strong transition sites were detected with a common sequence 5'-G-A-C-N1-N2-N3-N4-3', in which N1 was either C or A, N2 ws A, C, or G, and either N3 or N4 was the nucleotide for the switchover to DNA synthesis. We conclude that the complementary sequence 3'-C-T-G-G/T-N'2-(N'3)-5' in the template strand is the most frequently used signal for synthesis of primer RNA. Whereas primer-RNA synthesis starts at a precisely defined nucleotide, the transition to DNA synthesis varies within two nucleotides. Because the observed signal sequence would be present on a statistical basis once per 128 nucleotides, only about 10% of the existing signals are used for primer synthesis in each round of replication so that nascent fragments 1000-2000 long result. This provides an unexpected flexibility for RNA priming of DNA synthesis.