期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1981
卷号:78
期号:6
页码:3308-3312
DOI:10.1073/pnas.78.6.3308
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We suggest a purely algebraic construction of the spin representation of an infinite-dimensional orthogonal Lie algebra (sections 1 and 2) and a corresponding group (section 4). From this we deduce a construction of all level-one highest-weight representations of orthogonal affine Lie algebras in terms of creation and annihilation operators on an infinite-dimensional Grassmann algebra (section 3). We also give a similar construction of the level-one representations of the general linear affine Lie algebra in an infinite-dimensional "wedge space." Along these lines we construct the corresponding representations of the universal central extension of the group SLn(k[t,t-1]) in spaces of sections of line bundles over infinite-dimensional homogeneous spaces (section 5).