期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1981
卷号:78
期号:7
页码:4309-4313
DOI:10.1073/pnas.78.7.4309
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The high-affinity binding of benzomorphan drugs (ethylketocyclazocine and N-allylnorcyclazocine) and [DAla2,DLeu5] enkephalin was examined in a mouse neuroblastoma--Chinese hamster brain clonal hybrid cell line (NCB-20). Scatchard analysis of saturation binding isotherms indicated the presence of a single binding site for 3H-labeled [DAla2,DLeu5]enkephalin (Kd = 3 nM) and multiple binding sites for [3H]ethylketocyclazocine (Kd = 4 and 20 nM) and N-[3H]allylnorcyclazocine (Kd = 0.5 and 15 nM). Both ethylketocyclazocine and N-allylnorcyclazocine competed (Ki = 10 and 30 nM, respectively) with [3H][DAla2,DLeu5]enkephalin binding in NCB-20 cells but neither [DAla2,DLeu5]enkephalin nor morphine could completely inhibit the specific binding of [3H]ethylketocyclazocine (7 nM) or N-[3H]allylnorcyclazocine (3 nM). Furthermore, not all benzomorphan drugs (e.g., ethylketocyclazocine) were totally efficacious in displacing 3 nM N-[3H]allylnorcyclazocine binding in the presence or absence of high concentrations of [DAla2,DLeu5]enkephalin. The data presented suggest that benzomorphan drugs interact with three distinct high-affinity binding sites: (i) a site that binds enkephalin and morphine in addition to ethylketocyclazocine and N-allylnorcyclazocine; (ii) a site that binds both ethylketocyclazocine and N-allylnorcyclazocine but not enkephalin and morphine; and (iii) a site that binds N-allylnorcyclazocine but not enkephalin, morphine, or ethylketocyclazocine. The first of these sites was comparable to the delta opiate receptor expressed in NG108-15 and N4TG1 cell lines based on the potency series obtained for various opiates and benzomorphan drugs in competition studies with [3H][DAla2,DLeu5]-enkephalin. However, the specific high-affinity benzomorphan binding sites thus far are unique and may represent biochemical correlates of kappa and sigma opiate receptors which have been proposed to exist on the basis of physiological studies.