期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1981
卷号:78
期号:7
页码:4639-4643
DOI:10.1073/pnas.78.7.4639
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Anatoxin-a, a bicyclic amine isolated from blue-green alga, binds to the nicotinic acetylcholine receptor of Torpedo electric tissue, thereby inducing conformational changes in the postsynaptic receptor--ion channel complex as evidenced by alterations in the binding of radiolabeled ligands to the complex. Anatoxin-a binds to the acetylcholine recognition site (Kd = 0.1--0.2 microM) as indicated by its competitive inhibition of specific [3H]acetylcholine and d-[3H]tubocurarine binding, Anatoxin-a stimulates the binding of three physiologically identified "ion channel blockers," [3H]perhydrohistrionicotoxin, [3H]phencyclidine, and [3H]phencyclidine methiodide. The 50% effective doses for these effects range from 0.14 to 0.28 microM. Incubation of Torpedo membranes with anatoxin-a before addition of a radiolabeled channel probe produces a time- and concentration-dependent attenuation of the binding compared to the situation in which anatoxin-a and the probe are added simultaneously. The time course for the elaboration of this decrease corresponds to electrophysiological measurements of anatoxin-a-induced desensitization of neuromuscular junction responses. In these nicotinic actions, anatoxin-a is about as potent as acetylcholine. Anatoxin-a has relatively low affinity for the muscarinic acetylcholine receptors of rat brain, inhibiting 3-[3H]quinuclidinyl benzilate binding (10(-10) M) by 50% at concentrations between 10 and 20 microM. In contrast to classical muscarinic agonists, anatoxin-a displays little regional selectivity in its binding, and its receptor affinity is unaltered by alkylation of the neural membranes with N-ethylmaleimide.