期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1981
卷号:78
期号:9
页码:5396-5400
DOI:10.1073/pnas.78.9.5396
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The leucine-specific binding protein of Escherichia coli is a periplasmic protein that is synthesized as a precursor and subsequently is processed during its secretion into the periplasmic space. The processing of both the leucine-specific binding protein and a plasmid-coded beta-lactamase is inhibited by phenethyl alcohol and by the proton ionophore, carbonylcyanide m-chlorophenylhydrazone (CCCP). The levels of CCCP that inhibit processing also produce significant decreases in the membrane potential. Valinomycin, a potassium ionophore, also inhibits processing of the leucine-specific binding protein in spheroplasts. Processing can be restored in CCCP-treated cells and in valinomycin-treated spheroplasts by dilution of the treated cells in fresh medium. These results suggest a role for membrane potential in the secretion of periplasmic proteins. A model is presented which suggests that membrane potential plays a primary role in the proper orientation of the precursor signal sequence within the membrane, thus promoting processing and secretion.