期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1981
卷号:78
期号:9
页码:5533-5537
DOI:10.1073/pnas.78.9.5533
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We have mapped all the cleavage sites for the restriction endonucleases BstEII, Kpn I, Pst I, Pvu II, Sac I, Sal I, Sma I, and Xho I on the circular chloroplast chromosomes from mung bean and pea. The mung bean chloroplast genome measures 150 kilobase pairs (kb) in length; it includes two identical sequences of 23 kb that contain the ribosomal genes and are arranged as an inverted repeat separated by single-copy regions of 21 and 83 kb. The pea chloroplast genome is only 120 kb in size, has only one set of ribosomal genes, and does not possess any detectable repeated sequences. The mung bean inverted repeat structure is common to all other nonleguminous higher plant chloroplast genomes studied, whereas the pea structure has been found only in the closely related legume Vicia faba. We conclude from these data that loss of one copy of the inverted repeat sequence has occurred only rarely during the evolution of the Angiosperms, and in the case of the legumes after the divergence of the mung bean line from the pea-Vicia line. We present hybridization data indicating that rearrangements that change the linear order of homologous sequences within the chloroplast genome have been quite frequent during the course of legume evolution.