期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1991
卷号:88
期号:16
页码:7396-7400
DOI:10.1073/pnas.88.16.7396
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Regions surrounding the single gamma-globin gene of galago and the duplicated gamma 1- and gamma 2-globin genes of gibbon, rhesus monkey, and spider monkey were sequenced and aligned with those from humans. Contrary to previous studies, spider monkey was found to have not one but two gamma-globin genes, only one of which (gamma 2) is functional. The reconstructed evolutionary history of the gamma-globin genes and their flanking sequences traces their origin to a tandem duplication of a DNA segment approximately 5.5 kilobases long that occurred before catarrhine primates (humans, apes, and Old World monkeys) diverged from platyrrhines (New World monkeys), much earlier than previously thought. This reconstructed molecular history also reveals that the duplication resulted from an unequal homologous crossover between two related L1 long interspersed repetitive elements, one upstream and one downstream of the single ancestral gamma-globin gene. Perhaps facilitated by the redundancy resulting from the duplication, the gamma-globin genes escaped the selective constraints of embryonically functioning genes and evolved into fetally functioning genes. This view is supported by the finding that a burst of nonsynonymous substitutions occurred in the gamma-globin genes while they became restructured for fetal expression in the common ancestor of platyrrhines and catarrhines.