首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16.
  • 本地全文:下载
  • 作者:L Samson ; B Derfler ; M Boosalis
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1991
  • 卷号:88
  • 期号:20
  • 页码:9127-9131
  • DOI:10.1073/pnas.88.20.9127
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We described previously the isolation of a Saccharomyces cerevisiae 3-methyladenine (3-MeAde) DNA glycosylase repair gene (MAG) by its expression in glycosylase-deficient Escherichia coli alkA tag mutant cells and its ability to rescue these cells from the toxic effects of alkylating agents. Here we extend this cross-species functional complementation approach to the isolation of a full-length human 3-MeAde DNA glycosylase cDNA that rescues alkA tag E. coli from killing by methyl methanesulfonate, and we have mapped the gene to human chromosome 16. The cloned cDNA, expressed from the pBR322 beta-lactamase promoter, contains an 894-base-pair open reading frame encoding a 32,894-Da protein able to release 3-MeAde, but not 7-methylguanine, from alkylated DNA. Surprisingly, the predicted human protein does not share significant amino acid sequence homology with the bacterial AlkA and Tag glycosylases or the yeast MAG glycosylase, but it does share extensive amino acid sequence homology with a rat 3-MeAde DNA glycosylase and significant DNA sequence homology with genes from several mammalian species. The cloning of a human 3-MeAde DNA glycosylase cDNA represents a key step in generating 3-MeAde repair-deficient cells and the determination of the in vivo role of this DNA repair enzyme in protecting against the toxic and carcinogenic effects of alkylating agents.
国家哲学社会科学文献中心版权所有