期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1991
卷号:88
期号:20
页码:9257-9261
DOI:10.1073/pnas.88.20.9257
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:C6-2B rat glioma cells were stably transfected with substance K receptor cDNA and used to study interactions between cAMP and Ca2+ signaling pathways. Activation of the newly expressed receptors by substance K increased the intracellular free Ca2+ concentration, as monitored by single-cell fura-2 imaging, and markedly inhibited agonist-stimulated cAMP accumulation. Blockade of intracellular Ca2+ mobilization abolished the substance K receptor-mediated inhibition of isoproterenol-induced cAMP production. Phosphodiesterase inhibitors, down-regulation or inhibition of protein kinase C, and pertussis toxin failed to prevent substance K-induced inhibition of agonist-stimulated cAMP accumulation. An increased intracellular Ca2+ concentration caused by either calcium ionophores or activation of endogenous bradykinin receptors was found to markedly reduce cAMP production in wild-type cells. These results demonstrate that elevated intracellular Ca2+ concentration can negatively modulate agonist-stimulated adenylate cyclase activity in C6-2B glioma cells.