期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1991
卷号:88
期号:21
页码:9508-9512
DOI:10.1073/pnas.88.21.9508
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Mitogen-activated protein kinase (MAP kinase) is a serine/threonine protein kinase that becomes enzymatically activated and phosphorylated on tyrosine and threonine following treatment of quiescent cells with a variety of stimulatory agonists. Phosphorylation on both tyrosine and threonine is necessary to maintain full activity, and these two regulatory phosphorylations occur close to each other, separated by a single glutamate. To study the mechanisms by which MAP kinase becomes phosphorylated and activated, we have cloned a full-length cDNA encoding MAP kinase and have expressed the enzyme in Escherichia coli as a soluble nonfusion protein. We find that the enzyme displays a basal, intramolecular autophosphorylation on tyrosine-185 that is accompanied by activation of the enzyme's kinase activity towards an exogenous substrate. The tyrosine-phosphorylated protein displays a small fraction of the activity seen with the fully activated, doubly phosphorylated enzyme isolated from mammalian cells but is activated 10- to 20-fold relative to the unphosphorylated enzyme. These findings raise the possibility that regulation of MAP kinase activity in response to agonist stimulation could occur in part through the enhancement of autophosphorylation on tyrosine.