期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1991
卷号:88
期号:9
页码:3932-3936
DOI:10.1073/pnas.88.9.3932
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:In an attempt to define the molecular basis of the functional diversity of K+ channels, we have isolated overlapping rat brain cDNAs that encoded a neuronal delayed rectifier K+ channel, K,4, that is structurally related to the Drosophila Shaw protein. Unlike previously characterized mammalian K+ channel genes, which each contain a single protein-coding exon, K,4 arises from alternative exon usage at a locus that also encodes another mammalian Shaw homolog, NGK2. Thus, the enormous diversity of K+ channels in mammals can be generated not just through gene duplication and divergence but also through alternative splicing of RNA.