期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1992
卷号:89
期号:16
页码:7811-7815
DOI:10.1073/pnas.89.16.7811
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:An algorithm for protein engineering, termed recursive ensemble mutagenesis, has been developed to produce diverse populations of phenotypically related mutants whose members differ in amino acid sequence. This method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis. Starting from partially randomized "wild-type" DNA sequences, a highly parallel search of sequence space for peptides fitting an experimenter's criteria is performed. Each iteration uses information gained from the previous rounds to search the space more efficiently. Simulations of the technique indicate that, under a variety of conditions, the algorithm can rapidly produce a diverse population of proteins fitting specific criteria. In the experimental analog, genetic selection or screening applied during recursive ensemble mutagenesis should force the evolution of an ensemble of mutants to a targeted cluster of related phenotypes.