首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging.
  • 本地全文:下载
  • 作者:D S Kerr ; L W Campbell ; O Thibault
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1992
  • 卷号:89
  • 期号:18
  • 页码:8527-8531
  • DOI:10.1073/pnas.89.18.8527
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Glucocorticoids (GCs) activate several biochemical/molecular processes in the hippocampus through two receptor types. In addition, GCs influence cognitive behaviors and hippocampal neural activity and can also increase the rate of aging-dependent cell loss in the hippocampus. However, the ionic mechanisms through which GCs modulate hippocampal neuronal function are not well understood. We report here direct evidence that activation of cytosolic steroid receptors, specifically of the type II GC receptor, can enhance voltage-dependent Ca2+ conductances in brain neurons. Ca2+ current was assessed by current-clamp measures of Ca2+ action potentials and by sharp electrode voltage-clamp analyses of voltage-sensitive currents in cesium-, tetrodotoxin-, and tetraethylammonium-treated CA1 neurons in hippocampal slices. Both Ca2+ action potentials and voltage-activated Ca2+ currents (N- and L-like) were increased by 2-hr exposure to the synthetic GC receptor agonist, RU 28362. This effect of RU 28362 was blocked by coincubation with cycloheximide, indicating that the GC receptor-Ca2+ channel interaction depends on de novo protein synthesis. Dysregulated calcium homeostasis is also viewed as a candidate mechanism in brain aging. Thus, present results are consistent with the hypothesis that excessive GC-receptor activation and resultant increased Ca2+ influx may be two sequential phases of a brain-aging process that results initially in impairment of function and eventually in neuronal loss.
国家哲学社会科学文献中心版权所有