首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity.
  • 本地全文:下载
  • 作者:S K Herbert ; G Samson ; D C Fork
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1992
  • 卷号:89
  • 期号:18
  • 页码:8716-8720
  • DOI:10.1073/pnas.89.18.8716
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The enzyme superoxide dismutase is ubiquitous in aerobic organisms where it plays a major role in alleviating oxygen-radical toxicity. An insertion mutation introduced into the iron superoxide dismutase locus (designated sodB) of the cyanobacterium Synechococcus sp. PCC 7942 created a mutant strain devoid of detectable iron superoxide dismutase activity. Both wild-type and mutant strains exhibited similar photosynthetic activity and viability when grown with 17 mumol.m-2.s-1 illumination in liquid culture supplemented with 3% carbon dioxide. In contrast, the sodB mutant exhibited significantly greater damage to its photosynthetic system than the wild-type strain when grown under increased oxygen tension or with methyl viologen. Although damage occurs at both photosystems I and II, it is primarily localized at photosystem I in the sodB mutant. Growth in 100% molecular oxygen for 24 hr decreased photoacoustically measured energy storage in 3-(3,4-dichlorophenyl)-1,1-dimethylurea and abolished the fluorescence state 2 to state 1 transition in the sodB mutant, indicating interruption of cyclic electron flow around photosystem I. Analysis of the flash-induced absorption transient at 705 nm indicated that the interruption of cyclic electron flow occurred in the return part of the cycle, between the two [4 Fe-4 S] centers of photosystem I, FA and FB, and cytochrome f. Even though the sodB mutant was more sensitive to damage by active oxygen than wild-type cells, both strains were equally sensitive to the photoinhibition of photosystem II caused by exposure to strong light.
国家哲学社会科学文献中心版权所有