期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1992
卷号:89
期号:19
页码:9069-9073
DOI:10.1073/pnas.89.19.9069
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Phenotypically stable cultures of untransformed mouse mammary epithelial cells (denoted 31EG4) were established and utilized to investigate the lactogenic hormone (glucocorticoids, insulin, and prolactin) regulation of tight junction formation. When 31EG4 cells were grown on permeable supports for 4 days in medium containing the synthetic glucocorticoid dexamethasone and insulin, confluent cell monolayers obtained a transepithelial electrical resistance (TER) of 1000-3000 omega.cm2. In contrast, over the same time period, confluent monolayers treated with insulin or insulin and prolactin maintained a low TER (35-150 omega.cm2). Consistent with the formation of tight junctions, apical to basolateral paracellular permeability was decreased from 12% to 1% for [14C]mannitol and 3.3% to 0.3% for [3H]inulin when cells were cultured in dexamethasone. This effect of dexamethasone on TER required extracellular calcium, de novo protein synthesis, dose-dependently correlated with glucocorticoid receptor occupancy, and was not due to an increase in cell density. As shown by direct and indirect immunofluorescence microscopy, dexamethasone treatment did not modulate the production or location of filamentous actin, the tight junction protein ZO-1, or the cell adhesion protein E-cadherin. Our results suggest that glucocorticoids play a fundamental role in the function and maintenance of cell-cell contact in the mammary epithelia by inducing the formation of tight junctions.