首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.
  • 本地全文:下载
  • 作者:O D Uchitel ; D A Protti ; V Sanchez
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1992
  • 卷号:89
  • 期号:8
  • 页码:3330-3333
  • DOI:10.1073/pnas.89.8.3330
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel.
国家哲学社会科学文献中心版权所有