标题:Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C-->T.A transversions in simian kidney cells.
期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1993
卷号:90
期号:3
页码:1122-1126
DOI:10.1073/pnas.90.3.1122
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:A single-stranded shuttle vector has been developed for the purpose of investigating translesional events in mammalian cells. The vector is designed to permit site-specific introduction of defined DNA lesions between a gene for neomycin resistance and its promoter. Efficiencies of translesional synthesis in simian kidney cells (COS) and Escherichia coli are established by determining the number of neomycin- and ampicillin-resistant colonies recovered, respectively, after introduction of a modified vector. Fidelity of translesional synthesis is evaluated by analyzing the nucleotide sequence of progeny phagemid DNA in the region corresponding to the lesion site. This experimental system, capable of detecting mutagenic and nonmutagenic events at and adjacent to the lesion site, was used to establish the mutagenic potential of a single 8-oxoguanine residue in DNA. This modified base, produced by attack of reactive oxygen species on cellular DNA, did not cause a decrease in the number of transformants when single-stranded DNA containing the lesion replicated in COS cells or E. coli. The predominant mutations observed (> 78%) were G-->T transversions targeted to the site of the lesion. The mutation frequencies for this event were 2.5-4.8% in COS cells and 1.8% in E. coli. It is concluded that a single-stranded shuttle vector, utilized in conjunction with a site-specific approach, can be used to investigate translesional events in mammalian cells and in bacteria.