期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1993
卷号:90
期号:4
页码:1518-1522
DOI:10.1073/pnas.90.4.1518
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Escherichia coli expresses two forms of the chemotaxis-associated CheA protein, CheAL and CheAS, as the result of translational initiation at two distinct, in-frame initiation sites in the gene cheA. The long form, CheAL, plays a crucial role in the chemotactic signal transduction mechanism by phosphorylating two other chemotaxis proteins: CheY and CheB. CheAL must first autophosphorylate at amino acid His-48 before transferring its phosphono group to these other signal transduction proteins. The short form, CheAS, lacks the N-terminal 97 amino acids of CheAL and, therefore, does not possess the site of autophosphorylation. Here we demonstrate that although it lacks the ability to autophosphorylate, CheAS can mediate phosphorylation of kinase-deficient variants of CheAL each of which retains a functional autophosphorylation site. This transphosphorylation enables these kinase-deficient CheAL variants to phosphorylate CheY. Because it mediates this activity, CheAS can restore to kinase-deficient E. coli cells the ability to tumble and, thus, to perform chemotaxis in swarm plate assays.