首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Human immunodeficiency virus coat protein gp120 inhibits the beta-adrenergic regulation of astroglial and microglial functions.
  • 本地全文:下载
  • 作者:G Levi ; M Patrizio ; A Bernardo
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1993
  • 卷号:90
  • 期号:4
  • 页码:1541-1545
  • DOI:10.1073/pnas.90.4.1541
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The goal of our study was to assess whether the human immunodeficiency virus (HIV) coat protein gp120 induces functional alterations in astrocytes and microglia, known for their reactivity and involvement in most types of brain pathology. We hypothesized that gp120-induced anomalies in glial functions, if present, might be mediated by changes in the levels of intracellular messengers important for signal transduction, such as cAMP. Acute (10 min) exposure of cultured rat cortical astrocytes or microglia to 100 pM gp120 caused only a modest (50-60%), though statistically significant, elevation in cAMP levels, which was antagonized by the beta-adrenergic receptor antagonist propranolol. More importantly, the protein substantially depressed [by 30% (astrocytes) and 50% (microglia)] the large increase in cAMP induced by the beta-adrenergic agonist isoproterenol (10 nM), without affecting that induced by direct adenylate cyclase stimulation by forskolin. Qualitatively similar results were obtained using a glial fibrillary acidic protein (GFAP)-positive human glioma cell line. The depression of the beta-adrenergic response had functional consequences in both astrocytes and microglia. In astrocytes we studied the phosphorylation of the two major cytoskeletal proteins, vimentin and GFAP, which is normally stimulated by isoproterenol, and found that gp120 partially (40-50%) prevented such stimulation. In microglial cells, which are the major producers of inflammatory cytokines within the brain, gp120 partially antagonized the negative beta-adrenergic modulation of lipopolysaccharide (10 ng/ml)-induced production of tumor necrosis factor alpha. Our results suggest that, by interfering with the beta-adrenergic regulation of astrocytes and microglia, gp120 may alter astroglial "reactivity" and upset the delicate cytokine network responsible for the defense against viral and opportunistic infections.
国家哲学社会科学文献中心版权所有