首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
  • 本地全文:下载
  • 作者:I Weygand-Durasević ; E Schwob ; D Söll
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1993
  • 卷号:90
  • 期号:5
  • 页码:2010-2014
  • DOI:10.1073/pnas.90.5.2010
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The recognition of the acceptor stem of tRNA(Gln) is an important element ensuring the accuracy of aminoacylation by Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18 ). On the basis of known mutations and the crystal structure of the tRNA(Gln).GlnRS complex, we mutagenized at saturation two motifs in the acceptor end binding domain of GlnRS. Mutants with lowered tRNA specificity were then selected in vivo by suppression of a glutamine-specific amber mutation (lacZ1000) with an amber suppressor tRNA derived from tRNA(1Ser). The mischarging GlnRS mutants obtained in this way retain the ability to charge tRNA(Gln), but in addition, they misacylate a number of noncognate amber suppressor tRNAs. The critical residues responsible for specificity are Arg-130 and Glu-131, located in a part of GlnRS that binds the acceptor stem of tRNA(Gln). On the basis of the spectrum of tRNAs capable of being misacylated by such mutants we propose that, in addition to taking part in productive interactions, the acceptor end binding domain contributes to recognition specificity by rejecting noncognate tRNAs through negative interactions. Analysis of the catalytic properties of one of the mischarging enzymes, GlnRS100 (Arg-130-->Pro, Glu-131-->Asp), indicates that, while the kinetic parameters of the mutant enzyme are not dramatically changed, it binds noncognate tRNA(Glu) more stably than the wild-type enzyme does (Kd is 1/8 that of the wild type). Thus, the stability of the noncognate complex may be the basis for mischarging in vivo.
国家哲学社会科学文献中心版权所有