标题:Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coli: influence of NH2-terminal region on localization in cytosol and membranes
期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1993
卷号:90
期号:7
页码:2651-2655
DOI:10.1073/pnas.90.7.2651
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The currently accepted model for the membrane topology of microsomal cytochrome P450 is that of a largely cytoplasmic domain bound by only one or two transmembrane segments at the NH2 terminus. However, as we have reported previously, P450 2E1 lacking the hydrophobic NH2-terminal signal peptide, like the full-length protein, is located in the inner cell membrane when expressed in Escherichia coli and is active with typical substrates. In the present study, additional variants of alcohol-inducible P450 2E1 as well as truncated forms of phenobarbital-inducible P450 2B4 were similarly expressed to determine the influence of the NH2-terminal region on the membrane-binding properties. After deletion of S1 (the NH2-terminal hydrophobic segment), or both S1 and L1 (the following hydrophilic region, expected to be lumenal or cytosolic), one-third of the resulting P450 2B4 (delta 2-20) and 2B4 (delta 2-27) remained membrane bound. Furthermore, the idea that the first two hydrophobic segments are required for attachment by a hairpin loop is not supported by the finding that after deletion of the S1, L1, and S2 segments about half of the P450 2E1 (delta 3-48) remained membrane bound. Since Na2CO3 treatment of the membrane fraction had no significant effect, the findings are apparently not attributable to a loose attachment or occlusion of the truncated proteins. The replacement of neutral amino acids by positively charged residues in positions 3 and 8 of P450 2E1 (delta 3-29) changed the amount in the cytosol from 35% to 50%, and the deletion of residues 2-20 or 2-27 from P450 2B4, which resulted in positive charges occurring in the NH2-terminal region, changed the amount in the cytosol from 27% to 67%. We conclude that alterations in the NH2-terminal region can change the location of the cytochrome from largely membranous to largely cytosolic and that the first two hydrophobic segments are not uniquely involved in membrane attachment.