首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A stochastic approximation algorithm with Markov chain Monte-Carlo method for incomplete data estimation problems
  • 本地全文:下载
  • 作者:Ming Gao Gu ; Fan Hui Kong
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1998
  • 卷号:95
  • 期号:13
  • 页码:7270-7274
  • DOI:10.1073/pnas.95.13.7270
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.
  • 关键词:incomplete data ; maximum likelihood estimation ; measurement error
国家哲学社会科学文献中心版权所有