首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Structural characterization and immunochemical detection of a fluorophore derived from 4-hydroxy-2-nonenal and lysine
  • 本地全文:下载
  • 作者:Lin Tsai ; Pamela A. Szweda ; Olga Vinogradova
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1998
  • 卷号:95
  • 期号:14
  • 页码:7975-7980
  • DOI:10.1073/pnas.95.14.7975
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Aging and the progression of certain degenerative diseases are accompanied by increases in intracellular fluorescent material, termed "lipofuscin" and ceroid, respectively. These pigments are observed within granules composed, in part, of damaged protein and lipid. Modification of various biomolecules by aldehyde products of lipid peroxidation is believed to contribute to lipofuscin and ceroid formation. However, little direct evidence currently exists because the structures responsible for the fluorescent, cross-linked nature of this material are not well characterized. In this study, we have identified a fluorescent product formed in the reaction of N-acetyllysine and 4-hydroxy-2-nonenal (HNE), a major product of lipid peroxidation and the most reactive of these compounds under physiological conditions [Esterbauer, H., Shaur, R. J. & Zollner, H. (1991) Free Radical Biol. Med. 11, 81-128]. This fluorescent compound, characterized as a 2-hydroxy-3-imino-1,2-dihydropyrrol derivative, appears to form upon oxidative cyclization of the nonfluorescent 2:1 lysine-HNE Michael adduct-Schiff base cross-link. Polyclonal antibody was raised to the N-acetyllysine-HNE fluorophore and found to be highly specific to the chromophore structure of the compound. This antibody has been used to conclusively demonstrate that the lysine-HNE derivative of this fluorophore forms on protein upon exposure to HNE. The results of this study therefore provide the basis for future investigations on the contribution(s) of HNE-derived fluorophore formation to lipofuscin and ceroid accumulation.
国家哲学社会科学文献中心版权所有