期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1998
卷号:95
期号:17
页码:9891-9896
DOI:10.1073/pnas.95.17.9891
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Nitrous oxide reductase (N2OR) is a dimeric copper-dependent bacterial enzyme that catalyzes the reduction of N2O to N2 as part of the denitrification pathway. In the absence of an x-ray crystal structure, the current model of the nature of the copper sites within the enzyme is based on four copper atoms per monomer and assigns two copper atoms to an electron transfer center, CuA, a bis-thiolate-bridged dinuclear copper center found to date only in N2OR and cytochrome c oxidase, and two copper atoms to a second dinuclear center, CuZ, presumed to be the site of catalysis. Based on detailed analysis of the low temperature magnetic CD spectra of N2OR, this paper revises the current model and proposes that both CuA and CuZ are variants of an electron transfer center and hence that all of the observed optical features are due to this electron transfer center. It is proposed further that the presence of these different forms provides a mechanism for the delivery of two electrons to an active site comprising copper ions lacking thiolate coordination.