首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes
  • 本地全文:下载
  • 作者:J. Anders Lundqvist ; Frida Sahlin ; Maria A. I. Åberg
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1998
  • 卷号:95
  • 期号:18
  • 页码:10356-10360
  • DOI:10.1073/pnas.95.18.10356
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We describe an efficient technique for the selective chemical and biological manipulation of the contents of individual cells. This technique is based on the electric-field-induced permeabilization (electroporation) in biological membranes using a low-voltage pulse generator and microelectrodes. A spatially highly focused electric field allows introduction of polar cell-impermeant solutes such as fluorescent dyes, fluorogenic reagents, and DNA into single cells. The high spatial resolution of the technique allows for design of, for example, cellular network constructions in which cells in close contact with each other can be made to possess different biochemical, biophysical, and morphological properties. Fluorescein, and fluo-3 (a calcium-sensitive fluorophore), are electroporated into the soma of cultured single progenitor cells derived from adult rat hippocampus. Fluo-3 also is introduced into individual submicrometer diameter processes of thapsigargin-treated progenitor cells, and a plasmid vector cDNA construct (pRAY 1), expressing the green fluorescent protein, is electroporated into cultured single COS 7 cells. At high electric field strengths, observations of dye-transfer into organelles are proposed.
国家哲学社会科学文献中心版权所有