首页    期刊浏览 2025年12月05日 星期五
登录注册

文章基本信息

  • 标题:Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: Choline-O-sulfate is metabolized into glycine betaine
  • 本地全文:下载
  • 作者:Magne Østerås ; Eric Boncompagni ; Nadine Vincent
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1998
  • 卷号:95
  • 期号:19
  • 页码:11394-11399
  • DOI:10.1073/pnas.95.19.11394
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Glycine betaine is a potent osmoprotectant accumulated by Sinorhizobium meliloti to cope with osmotic stress. The biosynthesis of glycine betaine from choline is encoded by an operon of four genes, betICBA, as determined by sequence and mutant analysis. The betI and betC genes are separated by an intergenic region containing a 130-bp mosaic element that also is present between the betB and betA genes. In addition to the genes encoding a presumed regulatory protein (betI), the betaine aldehyde dehydrogenase (betB), and the choline dehydrogenase (betA) enzymes also found in Escherichia coli, a new gene (betC) was identified as encoding a choline sulfatase catalyzing the conversion of choline-O-sulfate and, at a lower rate, phosphorylcholine, into choline. Choline sulfatase activity was absent from betC but not from betB mutants and was shown to be induced indifferently by choline or choline-O-sulfate as were the other enzymes of the pathway. Unlike what has been shown in other bacteria and plants, choline-O-sulfate is not used as an osmoprotectant per se in S. meliloti, but is metabolized into glycine betaine. S. meliloti also can use this compound as the sole carbon, nitrogen, and sulfur source for growth and that depends on a functional bet locus. In conclusion, choline-O-sulfate and phosphorylcholine, which are found in higher plants and fungi, appear to be substrates for glycine betaine biosynthesis in S. meliloti.
国家哲学社会科学文献中心版权所有