首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small
  • 本地全文:下载
  • 作者:Masatoshi Nei ; Sudhir Kumar ; Kei Takahashi
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1998
  • 卷号:95
  • 期号:21
  • 页码:12390-12397
  • DOI:10.1073/pnas.95.21.12390
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:In the maximum parsimony (MP) and minimum evolution (ME) methods of phylogenetic inference, evolutionary trees are constructed by searching for the topology that shows the minimum number of mutational changes required (M) and the smallest sum of branch lengths (S), respectively, whereas in the maximum likelihood (ML) method the topology showing the highest maximum likelihood (A) of observing a given data set is chosen. However, the theoretical basis of the optimization principle remains unclear. We therefore examined the relationships of M, S, and A for the MP, ME, and ML trees with those for the true tree by using computer simulation. The results show that M and S are generally greater for the true tree than for the MP and ME trees when the number of nucleotides examined (n) is relatively small, whereas A is generally lower for the true tree than for the ML tree. This finding indicates that the optimization principle tends to give incorrect topologies when n is small. To deal with this disturbing property of the optimization principle, we suggest that more attention should be given to testing the statistical reliability of an estimated tree rather than to finding the optimal tree with excessive efforts. When a reliability test is conducted, simplified MP, ME, and ML algorithms such as the neighbor-joining method generally give conclusions about phylogenetic inference very similar to those obtained by the more extensive tree search algorithms.
国家哲学社会科学文献中心版权所有