标题:Gene therapy with a single chain interleukin 12 fusion protein induces T cell-dependent protective immunity in a syngeneic model of murine neuroblastoma
期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1998
卷号:95
期号:5
页码:2475-2480
DOI:10.1073/pnas.95.5.2475
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:A major goal of tumor immunotherapy is the effective eradication of established metastases associated with the induction of a T cell-mediated protective immunity. We achieved this in a poorly immunogenic murine neuroblastoma model by gene therapy with a single chain interleukin 12 (scIL-12) fusion protein that assures equal expression of its p35 and p40 subunits. Thus, NXS2 hybrid neuroblastoma cells (C1300 x dorsal root ganglion cells), which form experimental bone marrow and liver metastases in syngeneic A/J mice, were transduced with a gene encoding murine interleukin 12, monomerized by introduction of a protein linker between the p35 and p40 protein chains of this heterodimeric cytokine. We demonstrate for the first time that subcutaneous vaccination with these transduced cells induces a protective immunity, as indicated by the complete absence of liver and bone marrow metastasis after challenge with NXS2 wild-type tumor cells. Furthermore, vaccination of animals with established liver and bone marrow metastases completely eradicated liver metastases and suppressed bone marrow metastases. The local and systemic immune response against scIL-12-transduced NXS2 cells is largely dependent on CD8+ T cells. This was demonstrated in vivo by depletion of immunocompetent A/J mice with monoclonal anti-CD4 and anti-CD8 antibodies and in vitro by specific major histocompatibility complex, class I-restricted CD8+ T cell-mediated killing of NXS2 and their parental C1300 neuroblastoma cells. In conclusion, we demonstrate successful anti-tumor immunotherapy with an scIL-12 fusion protein that could facilitate clinical application of interleukin 12 gene therapy.