首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Computational learning reveals coiled coil-like motifs in histidine kinase linker domains
  • 本地全文:下载
  • 作者:Mona Singh ; Bonnie Berger ; Peter S. Kim
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1998
  • 卷号:95
  • 期号:6
  • 页码:2738-2743
  • DOI:10.1073/pnas.95.6.2738
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The recent rapid growth of protein sequence databases is outpacing the capacity of researchers to biochemically and structurally characterize new proteins. Accordingly, new methods for recognition of motifs and homologies in protein primary sequences may be useful in determining how these proteins might function. We have applied such a method, an iterative learning algorithm, to analyze possible coiled coil domains in histidine kinase receptors. The potential coiled coils have not yet been structurally characterized in any histidine kinase, and they appear outside previously noted kinase homology regions. The learning algorithm uses a combination of established sequence patterns in known coiled coil proteins and histidine kinase sequence data to learn to recognize efficiently this coiled coil-like motif in the histidine kinases. The common appearance of the structural motif in a functionally important part of the receptors suggests hypotheses for kinase regulation and signal transduction.
国家哲学社会科学文献中心版权所有