期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1998
卷号:95
期号:6
页码:2738-2743
DOI:10.1073/pnas.95.6.2738
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The recent rapid growth of protein sequence databases is outpacing the capacity of researchers to biochemically and structurally characterize new proteins. Accordingly, new methods for recognition of motifs and homologies in protein primary sequences may be useful in determining how these proteins might function. We have applied such a method, an iterative learning algorithm, to analyze possible coiled coil domains in histidine kinase receptors. The potential coiled coils have not yet been structurally characterized in any histidine kinase, and they appear outside previously noted kinase homology regions. The learning algorithm uses a combination of established sequence patterns in known coiled coil proteins and histidine kinase sequence data to learn to recognize efficiently this coiled coil-like motif in the histidine kinases. The common appearance of the structural motif in a functionally important part of the receptors suggests hypotheses for kinase regulation and signal transduction.